Papers
Topics
Authors
Recent
2000 character limit reached

Reasoning in the Bernays-Schoenfinkel-Ramsey Fragment of Separation Logic (1610.04707v2)

Published 15 Oct 2016 in cs.LO

Abstract: Separation Logic (SL) is a well-known assertion language used in Hoare-style modular proof systems for programs with dynamically allocated data structures. In this paper we investigate the fragment of first-order SL restricted to the Bernays-Schoenfinkel-Ramsey quantifier prefix $\exists\forall^$, where the quantified variables range over the set of memory locations. When this set is uninterpreted (has no associated theory) the fragment is PSPACE-complete, which matches the complexity of the quantifier-free fragment. However, SL becomes undecidable when the quantifier prefix belongs to $\exists\forall^\exists*$ instead, or when the memory locations are interpreted as integers with linear arithmetic constraints, thus setting a sharp boundary for decidability within SL. We have implemented a decision procedure for the decidable fragment of $\exists\forall^$SL as a specialized solver inside a DPLL($T$) architecture, within the CVC4 SMT solver. The evaluation of our implementation was carried out using two sets of verification conditions, produced by (i) unfolding inductive predicates, and (ii) a weakest precondition-based verification condition generator. Experimental data shows that automated quantifier instantiation has little overhead, compared to manual model-based instantiation.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.