Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Harmonic Mean Linear Discriminant Analysis for Robust Image Classification (1610.04631v2)

Published 14 Oct 2016 in cs.CV and cs.AI

Abstract: Linear Discriminant Analysis (LDA) is a widely-used supervised dimensionality reduction method in computer vision and pattern recognition. In null space based LDA (NLDA), a well-known LDA extension, between-class distance is maximized in the null space of the within-class scatter matrix. However, there are some limitations in NLDA. Firstly, for many data sets, null space of within-class scatter matrix does not exist, thus NLDA is not applicable to those datasets. Secondly, NLDA uses arithmetic mean of between-class distances and gives equal consideration to all between-class distances, which makes larger between-class distances can dominate the result and thus limits the performance of NLDA. In this paper, we propose a harmonic mean based Linear Discriminant Analysis, Multi-Class Discriminant Analysis (MCDA), for image classification, which minimizes the reciprocal of weighted harmonic mean of pairwise between-class distance. More importantly, MCDA gives higher priority to maximize small between-class distances. MCDA can be extended to multi-label dimension reduction. Results on 7 single-label data sets and 4 multi-label data sets show that MCDA has consistently better performance than 10 other single-label approaches and 4 other multi-label approaches in terms of classification accuracy, macro and micro average F1 score.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube