Improved approximation for two dimensional strip packing with polynomial bounded width (1610.04430v2)
Abstract: We study the well-known two-dimensional strip packing problem. Given is a set of rectangular axis-parallel items and a strip of width $W$ with infinite height. The objective is to find a packing of these items into the strip, which minimizes the packing height. Lately, it has been shown that the lower bound of $3/2$ of the absolute approximation ratio can be beaten when we allow a pseudo-polynomial running-time of type $(n W){f(1/\varepsilon)}$. If $W$ is polynomially bounded by the number of items, this is a polynomial running-time. We present a pseudo-polynomial algorithm with approximation ratio $4/3 +\varepsilon$ and running time $(n W){1/\varepsilon{\mathcal{O}(2{1/\varepsilon})}}$.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.