Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MML is not consistent for Neyman-Scott (1610.04336v5)

Published 14 Oct 2016 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: Strict Minimum Message Length (SMML) is an information-theoretic statistical inference method widely cited (but only with informal arguments) as providing estimations that are consistent for general estimation problems. It is, however, almost invariably intractable to compute, for which reason only approximations of it (known as MML algorithms) are ever used in practice. Using novel techniques that allow for the first time direct, non-approximated analysis of SMML solutions, we investigate the Neyman-Scott estimation problem, an oft-cited showcase for the consistency of MML, and show that even with a natural choice of prior neither SMML nor its popular approximations are consistent for it, thereby providing a counterexample to the general claim. This is the first known explicit construction of an SMML solution for a natural, high-dimensional problem.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)