Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Decision Support for Increasing the Efficiency of Crowdsourced Software Development (1610.04142v1)

Published 13 Oct 2016 in cs.SE and cs.HC

Abstract: Crowdsourced software development (CSD) offers a series of specified tasks to a large crowd of trustworthy software workers. Topcoder is a leading platform to manage the whole process of CSD. While increasingly accepted as a realistic option for software development, preliminary analysis on Topcoder's software crowd worker behaviors reveals an alarming task-quitting rate of 82.9%. In addition, a substantial number of tasks do not receive any successful submission. In this paper, we report about a methodology to improve the efficiency of CSD. We apply massive data analytics and machine leaning to (i) perform comparative analysis on alternative technique analysis to predict likelihood of winners and quitters for each task, (ii) significantly reduce the amount of non-succeeding development effort in registered but inappropriate tasks, (iii) identify and rank the most qualified registered workers for each task, and (iv) provide reliable prediction of tasks risky to get any successful submission. Our results and analysis show that Random Forest (RF) based predictive technique performs best among the alternative techniques studied. Applying RF, the tasks recommended to workers can reduce the amount of non-succeeding development effort to a great extent. On average, over a period of 30 days, the savings are 3.5 and 4.6 person-days per registered tasks for experienced resp. unexperienced workers. For the task-related recommendations of workers, we can accurately recommend at least 1 actual winner in the top ranked workers, particularly 94.07% of the time among the top-2 recommended workers for each task. Finally, we can predict, with more than 80% F-measure, the tasks likely not getting any submission, thus triggering timely corrective actions from CSD platforms or task requesters.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.