Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Stroke Sequence-Dependent Deep Convolutional Neural Network for Online Handwritten Chinese Character Recognition (1610.04057v1)

Published 13 Oct 2016 in cs.CV

Abstract: In this paper, we propose a novel model, named Stroke Sequence-dependent Deep Convolutional Neural Network (SSDCNN), using the stroke sequence information and eight-directional features for Online Handwritten Chinese Character Recognition (OLHCCR). On one hand, SSDCNN can learn the representation of Online Handwritten Chinese Character (OLHCC) by incorporating the natural sequence information of the strokes. On the other hand, SSDCNN can incorporate eight-directional features in a natural way. In order to train SSDCNN, we divide the process of training into two stages: 1) The training data is used to pre-train the whole architecture until the performance tends to converge. 2) Fully-connected neural network which is used to combine the stroke sequence-dependent representation with eight-directional features and softmax layer are further trained. Experiments were conducted on the OLHCCR competition tasks of ICDAR 2013. Results show that, SSDCNN can reduce the recognition error by 50\% (5.13\% vs 2.56\%) compared to the model which only use eight-directional features. The proposed SSDCNN achieves 97.44\% accuracy which reduces the recognition error by about 1.9\% compared with the best submitted system on ICDAR2013 competition. These results indicate that SSDCNN can exploit the stroke sequence information to learn high-quality representation of OLHCC. It also shows that the learnt representation and the classical eight-directional features complement each other within the SSDCNN architecture.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.