Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Generalized Online Transfer Learning for Climate Control in Residential Buildings (1610.04042v1)

Published 13 Oct 2016 in cs.SY and cs.LG

Abstract: This paper presents an online transfer learning framework for improving temperature predictions in residential buildings. In transfer learning, prediction models trained under a set of available data from a target domain (e.g., house with limited data) can be improved through the use of data generated from similar source domains (e.g., houses with rich data). Given also the need for prediction models that can be trained online (e.g., as part of a model-predictive-control implementation), this paper introduces the generalized online transfer learning algorithm (GOTL). It employs a weighted combination of the available predictors (i.e., the target and source predictors) and guarantees convergence to the best weighted predictor. Furthermore, the use of Transfer Component Analysis (TCA) allows for using more than a single source domains, since it may facilitate the fit of a single model on more than one source domains (houses). This allows GOTL to transfer knowledge from more than one source domains. We further validate our results through experiments in climate control for residential buildings and show that GOTL may lead to non-negligible energy savings for given comfort levels.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.