Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Greedy Approach for Budgeted Maximum Inner Product Search (1610.03317v1)

Published 11 Oct 2016 in cs.DS and cs.LG

Abstract: Maximum Inner Product Search (MIPS) is an important task in many machine learning applications such as the prediction phase of a low-rank matrix factorization model for a recommender system. There have been some works on how to perform MIPS in sub-linear time recently. However, most of them do not have the flexibility to control the trade-off between search efficient and search quality. In this paper, we study the MIPS problem with a computational budget. By carefully studying the problem structure of MIPS, we develop a novel Greedy-MIPS algorithm, which can handle budgeted MIPS by design. While simple and intuitive, Greedy-MIPS yields surprisingly superior performance compared to state-of-the-art approaches. As a specific example, on a candidate set containing half a million vectors of dimension 200, Greedy-MIPS runs 200x faster than the naive approach while yielding search results with the top-5 precision greater than 75\%.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.