Papers
Topics
Authors
Recent
2000 character limit reached

Situational Awareness by Risk-Conscious Skills (1610.02847v1)

Published 10 Oct 2016 in cs.AI

Abstract: Hierarchical Reinforcement Learning has been previously shown to speed up the convergence rate of RL planning algorithms as well as mitigate feature-based model misspecification (Mankowitz et. al. 2016a,b, Bacon 2015). To do so, it utilizes hierarchical abstractions, also known as skills -- a type of temporally extended action (Sutton et. al. 1999) to plan at a higher level, abstracting away from the lower-level details. We incorporate risk sensitivity, also referred to as Situational Awareness (SA), into hierarchical RL for the first time by defining and learning risk aware skills in a Probabilistic Goal Semi-Markov Decision Process (PG-SMDP). This is achieved using our novel Situational Awareness by Risk-Conscious Skills (SARiCoS) algorithm which comes with a theoretical convergence guarantee. We show in a RoboCup soccer domain that the learned risk aware skills exhibit complex human behaviors such as `time-wasting' in a soccer game. In addition, the learned risk aware skills are able to mitigate reward-based model misspecification.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.