Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Stochastic Alternating Direction Method of Multipliers with Variance Reduction for Nonconvex Optimization (1610.02758v5)

Published 10 Oct 2016 in math.OC and stat.ML

Abstract: In the paper, we study the stochastic alternating direction method of multipliers (ADMM) for the nonconvex optimizations, and propose three classes of the nonconvex stochastic ADMM with variance reduction, based on different reduced variance stochastic gradients. Specifically, the first class called the nonconvex stochastic variance reduced gradient ADMM (SVRG-ADMM), uses a multi-stage scheme to progressively reduce the variance of stochastic gradients. The second is the nonconvex stochastic average gradient ADMM (SAG-ADMM), which additionally uses the old gradients estimated in the previous iteration. The third called SAGA-ADMM is an extension of the SAG-ADMM method. Moreover, under some mild conditions, we establish the iteration complexity bound of $O(1/\epsilon)$ of the proposed methods to obtain an $\epsilon$-stationary solution of the nonconvex optimizations. In particular, we provide a general framework to analyze the iteration complexity of these nonconvex stochastic ADMM methods with variance reduction. Finally, some numerical experiments demonstrate the effectiveness of our methods.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.