Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Computing Majority by Constant Depth Majority Circuits with Low Fan-in Gates (1610.02686v1)

Published 9 Oct 2016 in cs.CC

Abstract: We study the following computational problem: for which values of $k$, the majority of $n$ bits $\text{MAJ}_n$ can be computed with a depth two formula whose each gate computes a majority function of at most $k$ bits? The corresponding computational model is denoted by $\text{MAJ}_k \circ \text{MAJ}_k$. We observe that the minimum value of $k$ for which there exists a $\text{MAJ}_k \circ \text{MAJ}_k$ circuit that has high correlation with the majority of $n$ bits is equal to $\Theta(n{1/2})$. We then show that for a randomized $\text{MAJ}_k \circ \text{MAJ}_k$ circuit computing the majority of $n$ input bits with high probability for every input, the minimum value of $k$ is equal to $n{2/3+o(1)}$. We show a worst case lower bound: if a $\text{MAJ}_k \circ \text{MAJ}_k$ circuit computes the majority of $n$ bits correctly on all inputs, then $k\geq n{13/19+o(1)}$. This lower bound exceeds the optimal value for randomized circuits and thus is unreachable for pure randomized techniques. For depth $3$ circuits we show that a circuit with $k= O(n{2/3})$ can compute $\text{MAJ}_n$ correctly on all inputs.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.