Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Boost K-Means (1610.02483v2)

Published 8 Oct 2016 in cs.LG, cs.CV, and cs.DB

Abstract: Due to its simplicity and versatility, k-means remains popular since it was proposed three decades ago. The performance of k-means has been enhanced from different perspectives over the years. Unfortunately, a good trade-off between quality and efficiency is hardly reached. In this paper, a novel k-means variant is presented. Different from most of k-means variants, the clustering procedure is driven by an explicit objective function, which is feasible for the whole l2-space. The classic egg-chicken loop in k-means has been simplified to a pure stochastic optimization procedure. The procedure of k-means becomes simpler and converges to a considerably better local optima. The effectiveness of this new variant has been studied extensively in different contexts, such as document clustering, nearest neighbor search and image clustering. Superior performance is observed across different scenarios.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.