Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

There's No Comparison: Reference-less Evaluation Metrics in Grammatical Error Correction (1610.02124v1)

Published 7 Oct 2016 in cs.CL

Abstract: Current methods for automatically evaluating grammatical error correction (GEC) systems rely on gold-standard references. However, these methods suffer from penalizing grammatical edits that are correct but not in the gold standard. We show that reference-less grammaticality metrics correlate very strongly with human judgments and are competitive with the leading reference-based evaluation metrics. By interpolating both methods, we achieve state-of-the-art correlation with human judgments. Finally, we show that GEC metrics are much more reliable when they are calculated at the sentence level instead of the corpus level. We have set up a CodaLab site for benchmarking GEC output using a common dataset and different evaluation metrics.

Citations (57)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.