Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Do They All Look the Same? Deciphering Chinese, Japanese and Koreans by Fine-Grained Deep Learning (1610.01854v2)

Published 6 Oct 2016 in cs.CV

Abstract: We study to what extend Chinese, Japanese and Korean faces can be classified and which facial attributes offer the most important cues. First, we propose a novel way of obtaining large numbers of facial images with nationality labels. Then we train state-of-the-art neural networks with these labeled images. We are able to achieve an accuracy of 75.03% in the classification task, with chances being 33.33% and human accuracy 38.89% . Further, we train multiple facial attribute classifiers to identify the most distinctive features for each group. We find that Chinese, Japanese and Koreans do exhibit substantial differences in certain attributes, such as bangs, smiling, and bushy eyebrows. Along the way, we uncover several gender-related cross-country patterns as well. Our work, which complements existing APIs such as Microsoft Cognitive Services and Face++, could find potential applications in tourism, e-commerce, social media marketing, criminal justice and even counter-terrorism.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.