Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Human Decision-Making under Limited Time (1610.01698v1)

Published 6 Oct 2016 in stat.ML and cs.AI

Abstract: Subjective expected utility theory assumes that decision-makers possess unlimited computational resources to reason about their choices; however, virtually all decisions in everyday life are made under resource constraints - i.e. decision-makers are bounded in their rationality. Here we experimentally tested the predictions made by a formalization of bounded rationality based on ideas from statistical mechanics and information-theory. We systematically tested human subjects in their ability to solve combinatorial puzzles under different time limitations. We found that our bounded-rational model accounts well for the data. The decomposition of the fitted model parameter into the subjects' expected utility function and resource parameter provide interesting insight into the subjects' information capacity limits. Our results confirm that humans gradually fall back on their learned prior choice patterns when confronted with increasing resource limitations.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.