Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Neural Structural Correspondence Learning for Domain Adaptation (1610.01588v3)

Published 5 Oct 2016 in cs.CL

Abstract: Domain adaptation, adapting models from domains rich in labeled training data to domains poor in such data, is a fundamental NLP challenge. We introduce a neural network model that marries together ideas from two prominent strands of research on domain adaptation through representation learning: structural correspondence learning (SCL, (Blitzer et al., 2006)) and autoencoder neural networks. Particularly, our model is a three-layer neural network that learns to encode the nonpivot features of an input example into a low-dimensional representation, so that the existence of pivot features (features that are prominent in both domains and convey useful information for the NLP task) in the example can be decoded from that representation. The low-dimensional representation is then employed in a learning algorithm for the task. Moreover, we show how to inject pre-trained word embeddings into our model in order to improve generalization across examples with similar pivot features. On the task of cross-domain product sentiment classification (Blitzer et al., 2007), consisting of 12 domain pairs, our model outperforms both the SCL and the marginalized stacked denoising autoencoder (MSDA, (Chen et al., 2012)) methods by 3.77% and 2.17% respectively, on average across domain pairs.

Citations (105)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.