Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Reset-Free Guided Policy Search: Efficient Deep Reinforcement Learning with Stochastic Initial States (1610.01112v2)

Published 4 Oct 2016 in cs.LG and cs.RO

Abstract: Autonomous learning of robotic skills can allow general-purpose robots to learn wide behavioral repertoires without requiring extensive manual engineering. However, robotic skill learning methods typically make one of several trade-offs to enable practical real-world learning, such as requiring manually designed policy or value function representations, initialization from human-provided demonstrations, instrumentation of the training environment, or extremely long training times. In this paper, we propose a new reinforcement learning algorithm for learning manipulation skills that can train general-purpose neural network policies with minimal human engineering, while still allowing for fast, efficient learning in stochastic environments. Our approach builds on the guided policy search (GPS) algorithm, which transforms the reinforcement learning problem into supervised learning from a computational teacher (without human demonstrations). In contrast to prior GPS methods, which require a consistent set of initial states to which the system must be reset after each episode, our approach can handle randomized initial states, allowing it to be used in environments where deterministic resets are impossible. We compare our method to existing policy search techniques in simulation, showing that it can train high-dimensional neural network policies with the same sample efficiency as prior GPS methods, and present real-world results on a PR2 robotic manipulator.

Citations (35)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.