Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Cellular Automata and Finite Groups (1610.00532v2)

Published 3 Oct 2016 in math.GR, cs.DM, and cs.FL

Abstract: For a finite group $G$ and a finite set $A$, we study various algebraic aspects of cellular automata over the configuration space $AG$. In this situation, the set $\text{CA}(G;A)$ of all cellular automata over $AG$ is a finite monoid whose basic algebraic properties had remained unknown. First, we investigate the structure of the group of units $\text{ICA}(G;A)$ of $\text{CA}(G;A)$. We obtain a decomposition of $\text{ICA}(G;A)$ into a direct product of wreath products of groups that depends on the numbers $\alpha_{[H]}$ of periodic configurations for conjugacy classes $[H]$ of subgroups of $G$. We show how the numbers $\alpha_{[H]}$ may be computed using the M\"obius function of the subgroup lattice of $G$, and we use this to improve the lower bound recently found by Gao, Jackson and Seward on the number of aperiodic configurations of $AG$. Furthermore, we study generating sets of $\text{CA}(G;A)$; in particular, we prove that $\text{CA}(G;A)$ cannot be generated by cellular automata with small memory set, and, when all subgroups of $G$ are normal, we determine the relative rank of $\text{ICA}(G;A)$ on $\text{CA}(G;A)$, i.e. the minimal size of a set $V \subseteq \text{CA}(G;A)$ such that $\text{CA}(G;A) = \langle \text{ICA}(G;A) \cup V \rangle$.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.