Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Analysis of Exact and Approximated Epidemic Models over Complex Networks (1609.09565v1)

Published 30 Sep 2016 in cs.SI and math.DS

Abstract: We study the spread of discrete-time epidemics over arbitrary networks for well-known propagation models, namely SIS (susceptible-infected-susceptible), SIR (susceptible-infected-recovered), SIRS (susceptible-infected-recovered-susceptible) and SIV (susceptible-infected-vaccinated). Such epidemics are described by $2n$- or $3n$-state Markov chains. Ostensibly, because analyzing such Markov chains is too complicated, their $O(n)$-dimensional nonlinear "mean-field" approximation, and its linearization, are often studied instead. We provide a complete global analysis of the epidemic dynamics of the nonlinear mean-field approximation. In particular, we show that depending on the largest eigenvalue of the underlying graph adjacency matrix and the rates of infection, recovery, and vaccination, the global dynamics takes on one of two forms: either the epidemic dies out, or it converges to another unique fixed point (the so-called endemic state where a constant fraction of the nodes remain infected). A similar result has also been shown in the continuous-time case. We tie in these results with the "true" underlying Markov chain model by showing that the linear model is the tightest upper-bound on the true probabilities of infection that involves only marginals, and that, even though the nonlinear model is not an upper-bound on the true probabilities in general, it does provide an upper-bound on the probability of the chain not being absorbed. As a consequence, we also show that when the disease-free fixed point is globally stable for the mean-field model, the Markov chain has an $O(\log n)$ mixing time, which means the epidemic dies out quickly. We compare and summarize the results on different propagation models.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.