Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Approximate Hierarchical Clustering via Sparsest Cut and Spreading Metrics (1609.09548v1)

Published 29 Sep 2016 in cs.DS

Abstract: Dasgupta recently introduced a cost function for the hierarchical clustering of a set of points given pairwise similarities between them. He showed that this function is NP-hard to optimize, but a top-down recursive partitioning heuristic based on an alpha_n-approximation algorithm for uniform sparsest cut gives an approximation of O(alpha_n log n) (the current best algorithm has alpha_n=O(sqrt{log n})). We show that the aforementioned sparsest cut heuristic in fact obtains an O(alpha_n)-approximation for hierarchical clustering. The algorithm also applies to a generalized cost function studied by Dasgupta. Moreover, we obtain a strong inapproximability result, showing that the hierarchical clustering objective is hard to approximate to within any constant factor assuming the Small-Set Expansion (SSE) Hypothesis. Finally, we discuss approximation algorithms based on convex relaxations. We present a spreading metric SDP relaxation for the problem and show that it has integrality gap at most O(sqrt{log n}). The advantage of the SDP relative to the sparsest cut heuristic is that it provides an explicit lower bound on the optimal solution and could potentially yield an even better approximation for hierarchical clustering. In fact our analysis of this SDP served as the inspiration for our improved analysis of the sparsest cut heuristic. We also show that a spreading metric LP relaxation gives an O(log n)-approximation.

Citations (94)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.