Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Sentence Representation with Guidance of Human Attention (1609.09189v2)

Published 29 Sep 2016 in cs.CL

Abstract: Recently, much progress has been made in learning general-purpose sentence representations that can be used across domains. However, most of the existing models typically treat each word in a sentence equally. In contrast, extensive studies have proven that human read sentences efficiently by making a sequence of fixation and saccades. This motivates us to improve sentence representations by assigning different weights to the vectors of the component words, which can be treated as an attention mechanism on single sentences. To that end, we propose two novel attention models, in which the attention weights are derived using significant predictors of human reading time, i.e., Surprisal, POS tags and CCG supertags. The extensive experiments demonstrate that the proposed methods significantly improve upon the state-of-the-art sentence representation models.

Citations (44)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.