Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Scalable Discrete Supervised Hash Learning with Asymmetric Matrix Factorization (1609.08740v1)

Published 28 Sep 2016 in cs.CV

Abstract: Hashing method maps similar data to binary hashcodes with smaller hamming distance, and it has received a broad attention due to its low storage cost and fast retrieval speed. However, the existing limitations make the present algorithms difficult to deal with large-scale datasets: (1) discrete constraints are involved in the learning of the hash function; (2) pairwise or triplet similarity is adopted to generate efficient hashcodes, resulting both time and space complexity are greater than O(n2). To address these issues, we propose a novel discrete supervised hash learning framework which can be scalable to large-scale datasets. First, the discrete learning procedure is decomposed into a binary classifier learning scheme and binary codes learning scheme, which makes the learning procedure more efficient. Second, we adopt the Asymmetric Low-rank Matrix Factorization and propose the Fast Clustering-based Batch Coordinate Descent method, such that the time and space complexity is reduced to O(n). The proposed framework also provides a flexible paradigm to incorporate with arbitrary hash function, including deep neural networks and kernel methods. Experiments on large-scale datasets demonstrate that the proposed method is superior or comparable with state-of-the-art hashing algorithms.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube