Papers
Topics
Authors
Recent
2000 character limit reached

Training a Probabilistic Graphical Model with Resistive Switching Electronic Synapses (1609.08686v2)

Published 27 Sep 2016 in cs.NE, cs.DC, and cs.ET

Abstract: Current large scale implementations of deep learning and data mining require thousands of processors, massive amounts of off-chip memory, and consume gigajoules of energy. Emerging memory technologies such as nanoscale two-terminal resistive switching memory devices offer a compact, scalable and low power alternative that permits on-chip co-located processing and memory in fine-grain distributed parallel architecture. Here we report first use of resistive switching memory devices for implementing and training a Restricted Boltzmann Machine (RBM), a generative probabilistic graphical model as a key component for unsupervised learning in deep networks. We experimentally demonstrate a 45-synapse RBM realized with 90 resistive switching phase change memory (PCM) elements trained with a bio-inspired variant of the Contrastive Divergence (CD) algorithm, implementing Hebbian and anti-Hebbian weight updates. The resistive PCM devices show a two-fold to ten-fold reduction in error rate in a missing pixel pattern completion task trained over 30 epochs, compared to untrained case. Measured programming energy consumption is 6.1 nJ per epoch with the resistive switching PCM devices, a factor of ~150 times lower than conventional processor-memory systems. We analyze and discuss the dependence of learning performance on cycle-to-cycle variations as well as number of gradual levels in the PCM analog memory devices.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.