Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Unsupervised Co-segmentation of 3D Shapes via Functional Maps (1609.08313v1)

Published 27 Sep 2016 in cs.GR

Abstract: We present an unsupervised method for co-segmentation of a set of 3D shapes from the same class with the aim of segmenting the input shapes into consistent semantic parts and establishing their correspondence across the set. Starting from meaningful pre-segmentation of all given shapes individually, we construct the correspondence between same candidate parts and obtain the labels via functional maps. And then, we use these labels to mark the input shapes and obtain results of co-segmentation. The core of our algorithm is to seek for an optimal correspondence between semantically similar parts through functional maps and mark such shape parts. Experimental results on the benchmark datasets show the efficiency of this method and comparable accuracy to the state-of-the-art algorithms.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube