Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Generalized Line Spectral Estimation via Convex Optimization (1609.08198v1)

Published 26 Sep 2016 in cs.IT and math.IT

Abstract: Line spectral estimation is the problem of recovering the frequencies and amplitudes of a mixture of a few sinusoids from equispaced samples. However, in a variety of signal processing problems arising in imaging, radar, and localization we do not have access directly to such equispaced samples. Rather we only observe a severely undersampled version of these observations through linear measurements. This paper is about such generalized line spectral estimation problems. We reformulate these problems as sparse signal recovery problems over a continuously indexed dictionary which can be solved via a convex program. We prove that the frequencies and amplitudes of the components of the mixture can be recovered perfectly from a near-minimal number of observations via this convex program. This result holds provided the frequencies are sufficiently separated, and the linear measurements obey natural conditions that are satisfied in a variety of applications.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.