Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Predictive Positioning and Quality Of Service Ridesharing for Campus Mobility On Demand Systems (1609.08116v2)

Published 26 Sep 2016 in cs.MA

Abstract: Autonomous Mobility On Demand (MOD) systems can utilize fleet management strategies in order to provide a high customer quality of service (QoS). Previous works on autonomous MOD systems have developed methods for rebalancing single capacity vehicles, where QoS is maintained through large fleet sizing. This work focuses on MOD systems utilizing a small number of vehicles, such as those found on a campus, where additional vehicles cannot be introduced as demand for rides increases. A predictive positioning method is presented for improving customer QoS by identifying key locations to position the fleet in order to minimize expected customer wait time. Ridesharing is introduced as a means for improving customer QoS as arrival rates increase. However, with ridesharing perceived QoS is dependent on an often unknown customer preference. To address this challenge, a customer ratings model, which learns customer preference from a 5-star rating, is developed and incorporated directly into a ridesharing algorithm. The predictive positioning and ridesharing methods are applied to simulation of a real-world campus MOD system.A combined predictive positioning and ridesharing approach is shown to reduce customer service times by up to 29% and the customer ratings model is shown to provide the best overall MOD fleet management performance over a range of customer preferences.

Citations (57)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.