Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Random Forest for Malware Classification (1609.07770v1)

Published 25 Sep 2016 in cs.CR and cs.LG

Abstract: The challenge in engaging malware activities involves the correct identification and classification of different malware variants. Various malwares incorporate code obfuscation methods that alters their code signatures effectively countering antimalware detection techniques utilizing static methods and signature database. In this study, we utilized an approach of converting a malware binary into an image and use Random Forest to classify various malware families. The resulting accuracy of 0.9562 exhibits the effectivess of the method in detecting malware

Citations (52)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.