Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

Informative Planning and Online Learning with Sparse Gaussian Processes (1609.07560v1)

Published 24 Sep 2016 in cs.RO, cs.AI, cs.LG, and stat.ML

Abstract: A big challenge in environmental monitoring is the spatiotemporal variation of the phenomena to be observed. To enable persistent sensing and estimation in such a setting, it is beneficial to have a time-varying underlying environmental model. Here we present a planning and learning method that enables an autonomous marine vehicle to perform persistent ocean monitoring tasks by learning and refining an environmental model. To alleviate the computational bottleneck caused by large-scale data accumulated, we propose a framework that iterates between a planning component aimed at collecting the most information-rich data, and a sparse Gaussian Process learning component where the environmental model and hyperparameters are learned online by taking advantage of only a subset of data that provides the greatest contribution. Our simulations with ground-truth ocean data shows that the proposed method is both accurate and efficient.

Citations (72)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.