Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
104 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Identification of Time-Varying Systems: a Bayesian approach (1609.07393v1)

Published 23 Sep 2016 in cs.SY

Abstract: We extend the recently introduced regularization/Bayesian System Identification procedures to the estimation of time-varying systems. Specifically, we consider an online setting, in which new data become available at given time steps. The real-time estimation requirements imposed by this setting are met by estimating the hyper-parameters through just one gradient step in the marginal likelihood maximization and by exploiting the closed-form availability of the impulse response estimate (when Gaussian prior and Gaussian measurement noise are postulated). By relying on the use of a forgetting factor, we propose two methods to tackle the tracking of time-varying systems. In one of them, the forgetting factor is estimated by treating it as a hyper-parameter of the Bayesian inference procedure.

Citations (13)

Summary

We haven't generated a summary for this paper yet.