Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Online Identification of Time-Varying Systems: a Bayesian approach (1609.07393v1)

Published 23 Sep 2016 in cs.SY

Abstract: We extend the recently introduced regularization/Bayesian System Identification procedures to the estimation of time-varying systems. Specifically, we consider an online setting, in which new data become available at given time steps. The real-time estimation requirements imposed by this setting are met by estimating the hyper-parameters through just one gradient step in the marginal likelihood maximization and by exploiting the closed-form availability of the impulse response estimate (when Gaussian prior and Gaussian measurement noise are postulated). By relying on the use of a forgetting factor, we propose two methods to tackle the tracking of time-varying systems. In one of them, the forgetting factor is estimated by treating it as a hyper-parameter of the Bayesian inference procedure.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.