Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Block-proximal methods with spatially adapted acceleration (1609.07373v5)

Published 23 Sep 2016 in math.OC and cs.NA

Abstract: We study and develop (stochastic) primal--dual block-coordinate descent methods for convex problems based on the method due to Chambolle and Pock. Our methods have known convergence rates for the iterates and the ergodic gap: $O(1/N2)$ if each block is strongly convex, $O(1/N)$ if no convexity is present, and more generally a mixed rate $O(1/N2)+O(1/N)$ for strongly convex blocks, if only some blocks are strongly convex. Additional novelties of our methods include blockwise-adapted step lengths and acceleration, as well as the ability to update both the primal and dual variables randomly in blocks under a very light compatibility condition. In other words, these variants of our methods are doubly-stochastic. We test the proposed methods on various image processing problems, where we employ pixelwise-adapted acceleration.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.