Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Deep Quality: A Deep No-reference Quality Assessment System (1609.07170v1)

Published 22 Sep 2016 in cs.MM and cs.CV

Abstract: Image quality assessment (IQA) continues to garner great interest in the research community, particularly given the tremendous rise in consumer video capture and streaming. Despite significant research effort in IQA in the past few decades, the area of no-reference image quality assessment remains a great challenge and is largely unsolved. In this paper, we propose a novel no-reference image quality assessment system called Deep Quality, which leverages the power of deep learning to model the complex relationship between visual content and the perceived quality. Deep Quality consists of a novel multi-scale deep convolutional neural network, trained to learn to assess image quality based on training samples consisting of different distortions and degradations such as blur, Gaussian noise, and compression artifacts. Preliminary results using the CSIQ benchmark image quality dataset showed that Deep Quality was able to achieve strong quality prediction performance (89% patch-level and 98% image-level prediction accuracy), being able to achieve similar performance as full-reference IQA methods.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.