Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

(Bandit) Convex Optimization with Biased Noisy Gradient Oracles (1609.07087v2)

Published 22 Sep 2016 in cs.LG and stat.ML

Abstract: Algorithms for bandit convex optimization and online learning often rely on constructing noisy gradient estimates, which are then used in appropriately adjusted first-order algorithms, replacing actual gradients. Depending on the properties of the function to be optimized and the nature of ``noise'' in the bandit feedback, the bias and variance of gradient estimates exhibit various tradeoffs. In this paper we propose a novel framework that replaces the specific gradient estimation methods with an abstract oracle. With the help of the new framework we unify previous works, reproducing their results in a clean and concise fashion, while, perhaps more importantly, the framework also allows us to formally show that to achieve the optimal root-$n$ rate either the algorithms that use existing gradient estimators, or the proof techniques used to analyze them have to go beyond what exists today.

Citations (63)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.