Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Abstractive Meeting Summarization UsingDependency Graph Fusion (1609.07035v1)

Published 22 Sep 2016 in cs.CL

Abstract: Automatic summarization techniques on meeting conversations developed so far have been primarily extractive, resulting in poor summaries. To improve this, we propose an approach to generate abstractive summaries by fusing important content from several utterances. Any meeting is generally comprised of several discussion topic segments. For each topic segment within a meeting conversation, we aim to generate a one sentence summary from the most important utterances using an integer linear programming-based sentence fusion approach. Experimental results show that our method can generate more informative summaries than the baselines.

Citations (27)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.