Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Hyperbolic families and coloring graphs on surfaces (1609.06749v2)

Published 21 Sep 2016 in math.CO and cs.DM

Abstract: Let $G$ be a graph embedded in a fixed surface $\Sigma$ of genus $g$ and let $L=(L(v):v\in V(G))$ be a collection of lists such that either each list has size at least five, or each list has size at least four and $G$ is triangle-free, or each list has size at least three and $G$ has no cycle of length four or less. An $L$-coloring of $G$ is a mapping $\phi$ with domain $V(G)$ such that $\phi(v)\in L(v)$ for every $v\in V(G)$ and $\phi(v)\ne\phi(u)$ for every pair of adjacent vertices $u,v\in V(G)$. We prove * if every non-null-homotopic cycle in $G$ has length $\Omega(\log g)$, then $G$ has an $L$-coloring, * if $G$ does not have an $L$-coloring, but every proper subgraph does ("$L$-critical graph"), then $|V(G)|=O(g)$, * if every non-null-homotopic cycle in $G$ has length $\Omega(g)$, and a set $X\subseteq V(G)$ of vertices that are pairwise at distance $\Omega(1)$ is precolored from the corresponding lists, then the precoloring extends to an $L$-coloring of $G$, * if every non-null-homotopic cycle in $G$ has length $\Omega(g)$, and the graph $G$ is allowed to have crossings, but every two crossings are at distance $\Omega(1)$, then $G$ has an $L$-coloring, and * if $G$ has at least one $L$-coloring, then it has at least $2{\Omega(|V(G)|)}$ distinct $L$-colorings. We show that the above assertions are consequences of certain isoperimetric inequalities satisfied by $L$-critical graphs, and we study the structure of families of embedded graphs that satisfy those inequalities. It follows that the above assertions hold for other coloring problems, as long as the corresponding critical graphs satisfy the same inequalities.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.