Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Detecting facial landmarks in the video based on a hybrid framework (1609.06441v1)

Published 21 Sep 2016 in cs.CV

Abstract: To dynamically detect the facial landmarks in the video, we propose a novel hybrid framework termed as detection-tracking-detection (DTD). First, the face bounding box is achieved from the first frame of the video sequence based on a traditional face detection method. Then, a landmark detector detects the facial landmarks, which is based on a cascaded deep convolution neural network (DCNN). Next, the face bounding box in the current frame is estimated and validated after the facial landmarks in the previous frame are tracked based on the median flow. Finally, the facial landmarks in the current frame are exactly detected from the validated face bounding box via the landmark detector. Experimental results indicate that the proposed framework can detect the facial landmarks in the video sequence more effectively and with lower consuming time compared to the frame-by-frame method via the DCNN.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.