Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Conformalized Kernel Ridge Regression (1609.05959v1)

Published 19 Sep 2016 in stat.ML, cs.LG, and stat.AP

Abstract: General predictive models do not provide a measure of confidence in predictions without Bayesian assumptions. A way to circumvent potential restrictions is to use conformal methods for constructing non-parametric confidence regions, that offer guarantees regarding validity. In this paper we provide a detailed description of a computationally efficient conformal procedure for Kernel Ridge Regression (KRR), and conduct a comparative numerical study to see how well conformal regions perform against the Bayesian confidence sets. The results suggest that conformalized KRR can yield predictive confidence regions with specified coverage rate, which is essential in constructing anomaly detection systems based on predictive models.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.