Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the Convex Geometry of Weighted Nuclear Norm Minimization (1609.05944v1)

Published 19 Sep 2016 in cs.IT and math.IT

Abstract: Low-rank matrix approximation, which aims to construct a low-rank matrix from an observation, has received much attention recently. An efficient method to solve this problem is to convert the problem of rank minimization into a nuclear norm minimization problem. However, soft-thresholding of singular values leads to the elimination of important information about the sensed matrix. Weighted nuclear norm minimization (WNNM) has been proposed, where the singular values are assigned different weights, in order to treat singular values differently. In this paper the solution for WNNM is analyzed under a particular weighting condition using the connection between convex geometry and compressed sensing algorithms. It is shown that the WNNM is convex where the weights are in non-descending order and there is a unique global minimizer for the minimization problem.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.