Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Multi-Residual Networks: Improving the Speed and Accuracy of Residual Networks (1609.05672v4)

Published 19 Sep 2016 in cs.CV

Abstract: In this article, we take one step toward understanding the learning behavior of deep residual networks, and supporting the observation that deep residual networks behave like ensembles. We propose a new convolutional neural network architecture which builds upon the success of residual networks by explicitly exploiting the interpretation of very deep networks as an ensemble. The proposed multi-residual network increases the number of residual functions in the residual blocks. Our architecture generates models that are wider, rather than deeper, which significantly improves accuracy. We show that our model achieves an error rate of 3.73% and 19.45% on CIFAR-10 and CIFAR-100 respectively, that outperforms almost all of the existing models. We also demonstrate that our model outperforms very deep residual networks by 0.22% (top-1 error) on the full ImageNet 2012 classification dataset. Additionally, inspired by the parallel structure of multi-residual networks, a model parallelism technique has been investigated. The model parallelism method distributes the computation of residual blocks among the processors, yielding up to 15% computational complexity improvement.

Citations (37)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.