Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Kmerlight: fast and accurate k-mer abundance estimation (1609.05626v1)

Published 19 Sep 2016 in cs.DS

Abstract: k-mers (nucleotide strings of length k) form the basis of several algorithms in computational genomics. In particular, k-mer abundance information in sequence data is useful in read error correction, parameter estimation for genome assembly, digital normalization etc. We give a streaming algorithm Kmerlight for computing the k-mer abundance histogram from sequence data. Our algorithm is fast and uses very small memory footprint. We provide analytical bounds on the error guarantees of our algorithm. Kmerlight can efficiently process genome scale and metagenome scale data using standard desktop machines. Few applications of abundance histograms computed by Kmerlight are also shown. We use abundance histogram for de novo estimation of repetitiveness in the genome based on a simple probabilistic model that we propose. We also show estimation of k-mer error rate in the sampling using abundance histogram. Our algorithm can also be used for abundance estimation in a general streaming setting. The Kmerlight tool is written in C++ and is available for download and use from https://github.com/nsivad/kmerlight.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub