Optimal Control of Large-Scale Networks using Clustering Based Projections (1609.05265v3)
Abstract: In this paper we present a set of projection-based designs for constructing simplified linear quadratic regulator (LQR) controllers for large-scale network systems. When such systems have tens of thousands of states, the design of conventional LQR controllers becomes numerically challenging, and their implementation requires a large number of communication links. Our proposed algorithms bypass these difficulties by clustering the system states using structural properties of its closed-loop transfer matrix. The assignment of clusters is defined through a structured projection matrix P, which leads to a significantly lower-dimensional LQR design. The reduced-order controller is finally projected back to the original coordinates via an inverse projection. The problem is, therefore, posed as a model matching problem of finding the optimal set of clusters or P that minimizes the H2-norm of the error between the transfer matrix of the full-order network with the full-order LQR and that with the projected LQR. We derive a tractable relaxation for this model matching problem, and design a P that solves the relaxation. The design is shown to be implementable by a convenient, hierarchical two-layer control architecture, requiring far less number of communication links than full-order LQR.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.