Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

DiNoDB: an Interactive-speed Query Engine for Ad-hoc Queries on Temporary Data (1609.05096v1)

Published 16 Sep 2016 in cs.DB and cs.DC

Abstract: As data sets grow in size, analytics applications struggle to get instant insight into large datasets. Modern applications involve heavy batch processing jobs over large volumes of data and at the same time require efficient ad-hoc interactive analytics on temporary data. Existing solutions, however, typically focus on one of these two aspects, largely ignoring the need for synergy between the two. Consequently, interactive queries need to re-iterate costly passes through the entire dataset (e.g., data loading) that may provide meaningful return on investment only when data is queried over a long period of time. In this paper, we propose DiNoDB, an interactive-speed query engine for ad-hoc queries on temporary data. DiNoDB avoids the expensive loading and transformation phase that characterizes both traditional RDBMSs and current interactive analytics solutions. It is tailored to modern workflows found in machine learning and data exploration use cases, which often involve iterations of cycles of batch and interactive analytics on data that is typically useful for a narrow processing window. The key innovation of DiNoDB is to piggyback on the batch processing phase the creation of metadata that DiNoDB exploits to expedite the interactive queries. Our experimental analysis demonstrates that DiNoDB achieves very good performance for a wide range of ad-hoc queries compared to alternatives %such as Hive, Stado, SparkSQL and Impala.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube