Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Coherence Pursuit: Fast, Simple, and Robust Principal Component Analysis (1609.04789v3)

Published 15 Sep 2016 in cs.LG and stat.ML

Abstract: This paper presents a remarkably simple, yet powerful, algorithm termed Coherence Pursuit (CoP) to robust Principal Component Analysis (PCA). As inliers lie in a low dimensional subspace and are mostly correlated, an inlier is likely to have strong mutual coherence with a large number of data points. By contrast, outliers either do not admit low dimensional structures or form small clusters. In either case, an outlier is unlikely to bear strong resemblance to a large number of data points. Given that, CoP sets an outlier apart from an inlier by comparing their coherence with the rest of the data points. The mutual coherences are computed by forming the Gram matrix of the normalized data points. Subsequently, the sought subspace is recovered from the span of the subset of the data points that exhibit strong coherence with the rest of the data. As CoP only involves one simple matrix multiplication, it is significantly faster than the state-of-the-art robust PCA algorithms. We derive analytical performance guarantees for CoP under different models for the distributions of inliers and outliers in both noise-free and noisy settings. CoP is the first robust PCA algorithm that is simultaneously non-iterative, provably robust to both unstructured and structured outliers, and can tolerate a large number of unstructured outliers.

Citations (132)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube