Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Structured Dropout for Weak Label and Multi-Instance Learning and Its Application to Score-Informed Source Separation (1609.04557v2)

Published 15 Sep 2016 in cs.LG and cs.SD

Abstract: Many success stories involving deep neural networks are instances of supervised learning, where available labels power gradient-based learning methods. Creating such labels, however, can be expensive and thus there is increasing interest in weak labels which only provide coarse information, with uncertainty regarding time, location or value. Using such labels often leads to considerable challenges for the learning process. Current methods for weak-label training often employ standard supervised approaches that additionally reassign or prune labels during the learning process. The information gain, however, is often limited as only the importance of labels where the network already yields reasonable results is boosted. We propose treating weak-label training as an unsupervised problem and use the labels to guide the representation learning to induce structure. To this end, we propose two autoencoder extensions: class activity penalties and structured dropout. We demonstrate the capabilities of our approach in the context of score-informed source separation of music.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.