Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 225 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

STORE: Sparse Tensor Response Regression and Neuroimaging Analysis (1609.04523v3)

Published 15 Sep 2016 in stat.ML, stat.AP, and stat.ME

Abstract: Motivated by applications in neuroimaging analysis, we propose a new regression model, Sparse TensOr REsponse regression (STORE), with a tensor response and a vector predictor. STORE embeds two key sparse structures: element-wise sparsity and low-rankness. It can handle both a non-symmetric and a symmetric tensor response, and thus is applicable to both structural and functional neuroimaging data. We formulate the parameter estimation as a non-convex optimization problem, and develop an efficient alternating updating algorithm. We establish a non-asymptotic estimation error bound for the actual estimator obtained from the proposed algorithm. This error bound reveals an interesting interaction between the computational efficiency and the statistical rate of convergence. When the distribution of the error tensor is Gaussian, we further obtain a fast estimation error rate which allows the tensor dimension to grow exponentially with the sample size. We illustrate the efficacy of our model through intensive simulations and an analysis of the Autism spectrum disorder neuroimaging data.

Citations (90)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.