Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Stochastic Heavy Ball (1609.04228v2)

Published 14 Sep 2016 in math.ST, math.PR, stat.ML, and stat.TH

Abstract: This paper deals with a natural stochastic optimization procedure derived from the so-called Heavy-ball method differential equation, which was introduced by Polyak in the 1960s with his seminal contribution [Pol64]. The Heavy-ball method is a second-order dynamics that was investigated to minimize convex functions f . The family of second-order methods recently received a large amount of attention, until the famous contribution of Nesterov [Nes83], leading to the explosion of large-scale optimization problems. This work provides an in-depth description of the stochastic heavy-ball method, which is an adaptation of the deterministic one when only unbiased evalutions of the gradient are available and used throughout the iterations of the algorithm. We first describe some almost sure convergence results in the case of general non-convex coercive functions f . We then examine the situation of convex and strongly convex potentials and derive some non-asymptotic results about the stochastic heavy-ball method. We end our study with limit theorems on several rescaled algorithms.

Citations (100)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.