Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A joint-optimization NSAF algorithm based on the first-order Markov model (1609.04108v3)

Published 14 Sep 2016 in cs.SY

Abstract: Recently, the normalized subband adaptive filter (NSAF) algorithm has attracted much attention for handling the colored input signals. Based on the first-order Markov model of the optimal tap-weight vector, this paper provides a convergence analysis of the standard NSAF. Following the analysis, both the step size and the regularization parameter in the NSAF are jointly optimized in such a way that minimizes the mean square deviation. The resulting joint-optimization step size and regularization parameter (JOSR-NSAF) algorithm achieves a good tradeoff between fast convergence rate and low steady-state error. Simulation results in the context of acoustic echo cancellation demonstrate good features of the proposed algorithm.

Citations (7)

Summary

We haven't generated a summary for this paper yet.