Papers
Topics
Authors
Recent
2000 character limit reached

Noisy Inductive Matrix Completion Under Sparse Factor Models (1609.03958v1)

Published 13 Sep 2016 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: Inductive Matrix Completion (IMC) is an important class of matrix completion problems that allows direct inclusion of available features to enhance estimation capabilities. These models have found applications in personalized recommendation systems, multilabel learning, dictionary learning, etc. This paper examines a general class of noisy matrix completion tasks where the underlying matrix is following an IMC model i.e., it is formed by a mixing matrix (a priori unknown) sandwiched between two known feature matrices. The mixing matrix here is assumed to be well approximated by the product of two sparse matrices---referred here to as "sparse factor models." We leverage the main theorem of Soni:2016:NMC and extend it to provide theoretical error bounds for the sparsity-regularized maximum likelihood estimators for the class of problems discussed in this paper. The main result is general in the sense that it can be used to derive error bounds for various noise models. In this paper, we instantiate our main result for the case of Gaussian noise and provide corresponding error bounds in terms of squared loss.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.