Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Co-active Learning to Adapt Humanoid Movement for Manipulation (1609.03628v1)

Published 12 Sep 2016 in cs.RO, cs.LG, and cs.SY

Abstract: In this paper we address the problem of robot movement adaptation under various environmental constraints interactively. Motion primitives are generally adopted to generate target motion from demonstrations. However, their generalization capability is weak while facing novel environments. Additionally, traditional motion generation methods do not consider the versatile constraints from various users, tasks, and environments. In this work, we propose a co-active learning framework for learning to adapt robot end-effector's movement for manipulation tasks. It is designed to adapt the original imitation trajectories, which are learned from demonstrations, to novel situations with various constraints. The framework also considers user's feedback towards the adapted trajectories, and it learns to adapt movement through human-in-the-loop interactions. The implemented system generalizes trained motion primitives to various situations with different constraints considering user preferences. Experiments on a humanoid platform validate the effectiveness of our approach.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.