Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 89 tok/s
Gemini 3.0 Pro 56 tok/s
Gemini 2.5 Flash 158 tok/s Pro
Kimi K2 198 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Multi-Scale Cascade Fully Convolutional Network Face Detector (1609.03536v1)

Published 12 Sep 2016 in cs.CV

Abstract: Face detection is challenging as faces in images could be present at arbitrary locations and in different scales. We propose a three-stage cascade structure based on fully convolutional neural networks (FCNs). It first proposes the approximate locations where the faces may be, then aims to find the accurate location by zooming on to the faces. Each level of the FCN cascade is a multi-scale fully-convolutional network, which generates scores at different locations and in different scales. A score map is generated after each FCN stage. Probable regions of face are selected and fed to the next stage. The number of proposals is decreased after each level, and the areas of regions are decreased to more precisely fit the face. Compared to passing proposals directly between stages, passing probable regions can decrease the number of proposals and reduce the cases where first stage doesn't propose good bounding boxes. We show that by using FCN and score map, the FCN cascade face detector can achieve strong performance on public datasets.

Citations (68)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.