Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hyperspectral Unmixing with Endmember Variability using Partial Membership Latent Dirichlet Allocation (1609.03500v1)

Published 12 Sep 2016 in cs.CV

Abstract: The application of Partial Membership Latent Dirichlet Allocation(PM-LDA) for hyperspectral endmember estimation and spectral unmixing is presented. PM-LDA provides a model for a hyperspectral image analysis that accounts for spectral variability and incorporates spatial information through the use of superpixel-based 'documents.' In our application of PM-LDA, we employ the Normal Compositional Model in which endmembers are represented as Normal distributions to account for spectral variability and proportion vectors are modeled as random variables governed by a Dirichlet distribution. The use of the Dirichlet distribution enforces positivity and sum-to-one constraints on the proportion values. Algorithm results on real hyperspectral data indicate that PM-LDA produces endmember distributions that represent the ground truth classes and their associated variability.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube